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ABSTRACT 

Here we implemented a novel rendering method based on images converted from frames. Compared to other 

techniques, first method warps sprites with smooth surfaces which represent depth without gaps. Another method performs 

warping for more general scenes depending upon the halfway representation named LDI.LDI sight depends on single input 

camera view, but depends on multiple pixels in line of sight. Depends on depth complexity, size of portrayal changes. 

McMillan's warp ordering algorithm can be implemented because of single image coordinate system of LDI, resulting back 

to front order of pixels drawn in output image. Alpha compositing can be done effectively without depth sorting and no 

usage of z-buffer, so splitting becomes best solution for re-sampling problem. 

KEYWORDS: Plane Filtered, 3D Mapping, Depth Images, FSPF 

1. INTRODUCTION 

Applications like 3D mapping and reconstruction, shape analysis, pose tracking and object recognition can 

potentially benefit from this sensor modality. However, given that indoor mobile robots have limited onboard 

computational power it is infeasible to process the complete 3D point clouds in real time and at full frame rates              

(e.g. the Microsoft Kinect sensor produces 9.2M3D pts/sec). Feature extraction, and in particular, geometric feature 

extraction is therefore the natural choice for abstracting the sensor data. However, noisy sensing and the presence he sprite 

approximation's fidelity to the correct new view is highly dependent on the geometry being represented. In particular 

shown as orange points, corresponding convex polygons shown in blue.  

The complete 3D point cloud is overlaid as translucent grey for reference. (b) Scene polygon set generated by  

merging polygons from 15 consecutive depth image frames of geometric outliers (objects amidst the geometric features 

that do not match the geometric model of the features) provide additional challenges to the task of geometric feature 

extraction. We introduce the Fast Sampling Plane Filtering (FSPF) algorithm that  samples the depth image to produce a 

set of “plane filtered” points corresponding to planes, the corresponding plane parameters (normals and offsets), and  the 

convex polygons in 3D to fit these plane filtered points. 

The FSPF algorithm meets the following goals: 

 Reduce the volume of the 3D point cloud by generating a smaller set of “plane filtered” 3D points 

 Compute convex polygons to fit the plane filtered points 

 Iteratively merge convex plane polygons without maintaining a history of all observed plane filtered points 

 Perform all of the above in real time and at full frame rates 
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This paper introduces two new extensions to overcome both of these limitations. The first extension is primarily 

applicable to smoothly varying surfaces, while the second is useful primarily for very complex geometries. Each method 

provides efficient image based rendering capable of producing multiple frames per second on a PC. In the case of sprites 

representing smoothly varying surfaces, we introduce an algorithm for rendering Sprites with Depth. The algorithm first 

forward maps (i.e., warps) the depth values themselves and then uses this information to add parallax corrections to a 

standard sprite renderer. For more complex geometries, we introduce the Layered Depth Image, or LDI, that contains 

potentially multiple depth pixels at each discrete location in the image. Instead of a 2D array of depth pixels                       

(a pixel with associated depth information), we store a 2D array of layered depth pixels. A layered depth pixel stores a set 

of depth pixels along one line of sight sorted in front to back order. The front element in the layered depth pixel samples 

the first surface seen along that line of sight; the next pixel in the layered depth pixel samples the next surface seen along 

that line of sight, etc. When rendering from an LDI, the requested view can move away from the original LDI view and 

expose surfaces that were not visible in the first layer. The previously occluded regions may still be rendered from data 

stored in some later layer of a layered depth pixel. 

 

Figure 1: Different Image Based Primitives Can Serve Well Depending on Distance from the Camera 

 

Representation grows linearly only with the depth complexity of the image. Moreover, because the LDI data are 

represented in a single image coordinate system, McMillan's ordering algorithm [20] can be successfully applied. As a 

result, pixels are drawn in the output image in back to front order allowing proper alpha blending without depth sorting.   

No z-buffer is required, so alpha-compositing can be done efficiently without explicit depth sorting. This makes splatting 

an efficient solution to the reconstruction problem. 

Sprites with Depth and Layered Depth Images provide us with two new image based primitives that can be used 

in combination with traditional ones. Figure 1 depicts five types of primitives we may wish to use. The camera at the center 

of the frustum indicates where the image based primitives were generated from. The viewing volume indicates the range 

one wishes to allow the camera to move while still re-using these image based primitives. The assumption here is that 

although the part of the scene depicted in the sprite may display some parallax relative to the background environment map 

and other sprites, it will not need to depict any parallax within the sprite itself. Yet closer to the camera, for ele-ments with 

smoothly varying depth, Sprites with Depth are capable of displaying internal parallax but cannot deal with disclusions. 

2. PREVIOUS WORK 

A convex polygon is denoted by the tuple c = f ^ P; n; p; r; b1; b2;Bg where ^ P is the set of 3D points used to 

construct the convex polygon, n the number of points in P, _p the centroid of the polygon, r the normal to the polygon 
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plane, b1 and b2 the 2D basis vectors on the plane of the polygon and B the set of 3D points which define the convex 

boundary of the polygon. 

 

Figure 2 

3. RENDERING SPRITES 

Sprites are texture maps or images with alphas (transparent pixels) rendered onto planar surfaces. They can be 

used either for locally caching the results of slower rendering and then generating new views by warping [30, 26, 31, 14], 

or they can be used directly as drawing primitives (as in video games). The texture map associated with a sprite can be 

computed by simply choosing a 3D viewing matrix and projecting some portion of the scene onto the image plane.           

In practice, a view associated with the current or expected viewpoint is a good choice. A3Dplane equation can also be 

computed for the sprite, e.g., by fitting a 3D plane to the z-buffer values associated with the sprite pixels. Below, we derive 

the equations for the 2D perspective mapping between a sprite and its novel view. This is useful both for implementing a 

backward mapping algorithm, and lays the foundation for our Sprites with Depth rendering algorithm. A sprite consists of 

an alpha-matted image I1(x1, y1), a 4_4 camera matrix C1 which maps from 3D world coordinates (X, Y, Z, 1) into the 

sprite’s coordinates  (x1, y1, z1, 1),  
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(z1 is the z-buffer value), and a plane equation. This plane equation can either be specified in world coordinates, AX + BY + 

CZ +D = 0, or it can be specified in the sprite’s coordinate system, ax1 + by1 + cz1 + d = 0. In the former case, we can 

form a new camera matrix C 1 by replacing the third row of C1 with the row [A B C D], while in the latter, we can 

computeˆC1 = PC1, where  

 

 

In either case, we can write the modified projection 

Where  d1 = 0 for pixels on the plane. For pixels off the plane, d1 is the scaled perpendicular distance to the plane 

(the scale factor is 1 if A2 + B2 + C2 = 1) divided by the pixel to camera distance w1. Given such a sprite, how do we 

compute the 2Dtransformation associated with a novel view ˆC2? The mapping between pixels  

 

where H1,2 is the 2D planar perspective transformation (homography) obtained by dropping the third row and 

column of T1,2. The coordinates (x2, y2) obtained after dividing out w2 index a pixel address in the output camera’s image. 

Efficient backward mapping techniques exist for performing the 2D perspective warp [8, 34], or texture mapping hardware 

can be used. 

3.1 Sprites with Depth 

The descriptive power (realism) of sprites can be greatly enhanced by adding an out-of-plane displacement 

component d1 at each pixel in the sprite.
1
 Unfortunately, such a representation can no longer be rendered directly using a 

backward mapping algorithm. 

Using the same notation as before, we see that the transfer equation is now  
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A solution to this problem is to first forward map the displacements d1, and to then use Equation (4) to perform a 

backward mapping step with the new (view-based) displacements. We can therefore use a quick single-pixel splat 

algorithm followed by a quick hole filling, or alternatively, use a simple 2 _ 2 splat. The second main advantage is that we 

can design the forward warping step to have a simpler form by factoring out the planar perspective warp. Notice that we 

can rewrite Equation (4) as 

           

With 

                

where e_1,2 = H−1 1,2 e1,2. 

 

                       (a)                                 (b)                                  (c)                                   (d)                            (e) 

 

                       (f)                                      (g)                                (h)                                  (i)                              (j) 

Figure 3: Plane with Bump Rendering Example: (a) Input Color (Sprite) Image I1 (x1 , y1 ); (b) Sprite Warped by 

Homography Only (No Parallax); (c) Sprite Warped by Homography and Crude Parallax (d1 ); (d) Sprite Warped 

by Homography and True Parallax (d2 ); (e) with Gap Fill Width Set to 3; (f) Input Depth Map d1 (x1 , y1 ); (g) Pure 

Parallax Warped Depth Map d3 (x3 , y3 ); (h) Forward Warped Depth Map d2 (x2 , y2 ); (i) Forward Warped Depth 

Map without Parallax Correction; (j) Sprite with “Pyramid” Depth Map 

 

 
(a)                                                (b)                                                    (c) 

http://www.iaset.us/


38                                                                                                                                                                  G. Pinakapani & T. Venkateswarlu 

 

www.iaset.us                                                                                                                                                     editor@iaset.us 

 

(d)                                                                                                         (e) 

 

(f)                                                          (g)                                                        (h)  

Figure 4: Results of Sprite Extraction from Image Sequence: (a) Third of Five Images; (b) Initial Segmentation Into 

Six Layers; (c) Recovered Depth Map; (d) the Five Layer Sprites; (e) Residual Depth Image for Fifth Layer;             

(c) Re-Synthesized Third Image (Note Extended Field of View); (g) Novel View without Residual Depth;                       

(h) Novel View with Residual Depth (Note the “Rounding” of the People) 

 

Our novel two-step rendering algorithm thus proceeds in two stages: 

 Forward map the displacement map d1(x1, y1), using only the parallax component given in Equation to obtain 

d3(x3, y3); 

 Backward map the resulting warped displacements d3(x3, y3) using Equation (5) to obtain d2(x2, y2)                  

(the displacements in the new camera view); 

 Backward map the original sprite colors, using both the homography H2,1 and the new parallax d2 as in             

Equation (4) 

(with the 1 and 2 indices interchanged), to obtain the image corresponding to camera C2. The last two operations 

can be combined into a single raster scan over the output image, avoiding the need to perspective warp d3 into d2.               

More precisely, for each output pixel (x2, y2), we compute (x3, y3) such that 

 

to compute where to look up the displacement d3(x3, y3), and form the final address of the source sprite pixel 

using 

2 We can obtain a quicker, but less accurate, algorithm by omitting the first step, i.e., the pure parallax warp from 

d1 to d3. If we assume the depth  

3.2 Recovering Sprites from Image Sequences 

While sprites and sprites with depth can be generated using computer graphics techniques, they can also be 

extracted from image sequences using computer vision techniques. To do this, we use a layered motion estimation 
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algorithm [32, 1], which simultaneously segments the sequence into coherently moving regions, and computes a parametric 

motion estimate (planar perspective transformation) for each layer. To convert the recovered layers into sprites, we need to 

determine the plane equation associated with each region.  

4. LAYERED DEPTH IMAGES 

While the use of sprites and Sprites with Depth provides a fast means to warp planar or smoothly varying 

surfaces, more general scenes require the ability to handle more general disocclusions and large amounts of parallax as the 

viewpoint moves. These needs have led to the development of Layered Depth Images (LDI).Like a sprite with depth, pixels 

contain depth values along with their colors (i.e., a depth pixel). In addition, a Layered Depth Image Figure 5 contains 

potentially multiple depth pixels per pixel location. The farther depth pixels, which are occluded from the LDI center, will 

act to fill in the disocclusions that occur as the viewpoint moves away from the center. The structure of an LDI is 

summarized by the following conceptual representation: 

 

Figure 5: Layered Depth Image 

In practice, we implement Layered Depth Images in two ways. When creating layered depth images, it is 

important to be able to efficiently insert and delete layered depth pixels, so the Layers array in the Layered Depth Pixel 

structure is implemented as a linked list. When rendering, it is important to maintain spatial locality of depth pixels in order 

to most effectively take advantage of the cache in the CPU [12]. In Section 5.1 we discuss the compact render-time version 

of layered depth images. There are a variety of ways to generate an LDI. Given a synthetic scene, we could use multiple 

images from nearby points of view for which depth information is available at each pixel. This informa-tion can be 

gathered from a standard ray tracer that returns depth per pixel or from a scan conversion and z-buffer algorithm where the 

z-buffer is also returned.  

Layered Depth Image = Camera: camera 

Pixels [0..xres-1,0..yres-1]: array of Layered Depth Pixel 

The layered depth image contains camera in formation plus an array of size x res by y res layered depth pixels.  

4.1 LDIs from Multiple Depth Images 

We can construct an LDI by warping n depth images into a com-mon camera view. For example the depth images 

C2 and C3 in Figure 5 can be warped to the camera frame defined by the LDI (C1 in figure 5). 
3
If, during the warp from the 

input camera to the LDI camera, two or more pixels map to the same layered depth pixel, their Z values are compared.           

If the Z values differ by more than a preset epsilon, a new layer is added to that layered depth pixel for each distinct                 

Z value (i.e., Num Layers is incremented and a new depth pixel is added), otherwise (e.g., depth pixels c and d in figure 5), 

the values are averaged resulting in a single depth pixel. This preprocessing is similar to the rendering described by            
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Max [18]. This construction of the layered depth image is effectively decou-pled from the final rendering of images from 

desired viewpoints. Thus, the LDI construction does not need to run at multiple frames per second to allow interactive 

camera motion. 

4.2 LDIs from a Modified Ray Tracer 

By construction, a Layered Depth Image reconstructs images of a scene well from the center of projection of the 

LDI (we simply display the nearest depth pixels). The quality of the reconstruction from another viewpoint will depend on 

how closely the distribution of depth pixels in the LDI, when warped to the new viewpoint, corresponds to the pixel 

density in the new image. Two common events that occur are: (1) disocclusions as the viewpoint changes, When using a 

ray tracer, we have the freedom to sample the scene with any distribution of rays we desire. We could simply allow the 

rays emanating from the center of the LDI to pierce surfaces, recording each hit along the way (up to some maximum). 

This would solve the disocclusion problem but would not effectively sample surfaces edge on to the LDI. 

What set of rays should we trace to sample the scene, to best ap-proximate the distribution of rays from all 

possible viewpoints we are interested in? For simplicity, we have chosen to use a cubical region of empty space 

surrounding the LDI center to represent the region that the viewer is able to move in. Each face of the viewing cube defines 

a 90 degree frustum which we will use to define a single LDI (Figure 6). The six faces of the viewing cube thus cover all of 

space. For the following discussion we will refer to a single LDI. Each ray in free space has four coordinates, two for 

position and two for direction. Since all rays of interest intersect the cube faces, we will choose the outward intersection to 

parameterize the position of the ray. Direction is parameterized by two angles. 

4.3 LDIs from Real Images  

The dinosaur model in Figure 11 is  constructed from 21 photographs of the object   undergoing a 360 degree 

rotation on a computer-controlled calibrated turntable. An adaptation of Seitz and Dyer's voxel coloring  algorithm [29] is 

used to obtain the LDI represen-tation directly from the input images. The regular voxelization of Seitz and Dyer is 

replaced by a view-centered voxelization similar to the LDI structure. The procedure entails moving outward on rays from 

the LDI camera center and projecting candidate voxels back into the input images. If all input images agree on a color, this 

voxel is filled as a depth pixel in the LDI structure. This approach en-ables straightforward construction of LDI's from 

images that do not contain depth per pixel. 

5. RENDERING LAYERED DEPTH IMAGES 

Our fast warping-based renderer takes as input an LDI along with its associated camera information. Given a new 

desired camera position, the warper uses an incremental warping algorithm to efficiently create an output image.          

Pixels from the LDI are splatted into the output image using the over compositing operation. The size and footprint of the 

splat is based on an estimated size of the re-projected pixel. 

5.1 Space Efficient Representation 

When rendering, it is important to maintain the spatial locality of depth pixels to exploit the second level cache in 

the CPU [12]. To this end, we reorganize the depth pixels into a linear array ordered from bottom to top and left to right in 

screen space, and back to front along a ray. We also separate out the number of layers in each layered depth pixel from the 

depth pixels themselves. The layered depth pixel structure does not exist explicitly in this implementation. Instead, a 
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double array of offsets is used to locate each depth pixel. The number of depth pixels in each scan line is accumulated into 

a vector of offsets to the beginning of each scan line. Within each scan line, for each pixel location, a total count of the 

depth pixels from the beginning of the scan line to that location is maintained. Thus to find any layered depth pixel, one 

simply offsets to the beginning of the scan line and then further to the first depth pixel at that location. This supports 

scanning in right-to-left order as well as the clipping operation discussed later. 

5.2 Incremental Warping Computation 

The incremental warping computation is similar to the one used for certain texture mapping operations [9, 7].     

The geometry of this computation has been analyzed by McMillan [22], and efficient computation for the special case of 

orthographic input images is given in [3]. Let C1 be the 4 _ 4 matrix for the LDI camera. It is composed of an affine 

transformation matrix, a projection matrix, and a viewport matrix, C1 = V1 _P1 _A1. This camera matrix transforms a 

point from the global coordinate system into the camera’s projected image coordinate system. The projected image 

coordinates (x1, y1), obtained after multiplying the point’s global coordinates by C1 and dividing out w1, index a screen 

pixel address. The z1coordinate can be used for depth comparisons in a z buffer. Let C2 be the output camera’s matrix. 

Define the transfer matrix asT1,2 = C2 _ C−1 

1. Given the projected image coordinates of some point seen in the LDI camera (e.g., the coordinates of a in 

Figure 5), 

 

The coordinates (x2, y2) obtained after dividing by w2, index a pixel address in the output camera’s image.     

Using the linearity of matrix operations, this matrix multiply can be factored to reuse much of the computation from each 

iteration through the layers of a layered depth pixel; result can be computed 

As 

 

To compute the warped position of the next layered depth pixel along a scanline, the new start is simply 

incremented 

 

Figure 6: Values for Size Computation of a Projected Pixel 
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The warping algorithm proceeds using McMillan’s ordering algorithm [20]. The LDI is broken up into four 

regions above and below and to the left and right of the epipolar point. For each quadrant, the LDI is traversed in       

(possibly reverse) scan line order. At the beginning of each scan line, start is computed. The sign of xincris determined by 

the direction of processing in this quadrant. Each layered depth pixel in the scan line is then warped to the output image by 

calling Warp. This procedure visits each of the layers in back to front order and computes result to determine its location 

in the output image. As in perspective texture mapping, a divide is required per pixel. Finally, the depth pixel’s color is 

splatted  at  this  location  in the output image 

The following pseudo code summarizes the warping algorithm applied to each layered depth pixel. 

 

5.3 Splat Size Computation 

To splat the LDI into the output image, we estimate the projected area of the warped pixel. This is a rough 

approximation to the foot print evaluation [33] optimized for speed. The proper size can be computed (differentially) as 

 

where d1 is the distance from the sampled surface point to the LDI camera, fov1 is the field of view of the LDI 

camera, res1 = (w1h1)−1 where w1 and h1 are the width and height of the LDI, and _1 is the angle between the surface 

normal and the line of sight to the LDI camera (see Figure 6). The same terms with subscript 2 refer to the output camera. 

It will be more efficient to compute an approximation of the square root of size, 
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We approximate the _s as the angles _ between the surface normal vector and the z axes of the camera’s 

coordinate systems. We also approximate d2 by Z2, the z coordinate of the sampled point in the output camera’s 

unprojected eye coordinate system. During rendering, we set the projection matrix such that z2 = 1=Z2. The current 

implementation supports 4 different splat sizes, so a very crude approximation of the size computation is implemented 

using a lookup table. For each pixel in the LDI, we store d1 using 5 bits. We use 6 bits to encode the normal, 3 for nx,           

and 3 for ny. This gives us an eleven-bit lookup table index. Before rendering each new image, we use the new output 

camera information to precompute values for the 2048 possible lookup table indexes. At each pixel we obtain psize by 

multiplying the computed z2 by the value found in the lookup table. 

 

To maintain the accuracy of the approximation for d1, we discretize d1 nonlinearly using a simple exponential 

function that allocates more bits to the nearby d1 values, and fewer bits to the distant d1 values. The four splat sizes we 

currently use have 1 by 1, 3 by 3, 5 by 5, and 7 by 7 pixel footprints. Each pixel in a footprint has an alpha value to 

approximate a Gaussian splat kernel. However, the alpha values are rounded to 1, 1/2, or 1/4, so the alpha blending can be 

done with integer shifts and adds 

5.4 Depth Pixel Representation  

The size of a cache line on current Intel processors (Pentium Pro and Pentium II) is 32 bytes. To fit four depth 

pixels into a single cache line we convert the floating point Z value to a 20 bit integer. This is then packed into a single 

word along with the 11 bit splat table index. These 32 bits along with the R, G, B, and alpha values fill out the 8 bytes.   

This seemingly small optimization yielded a 25 percent improvement in rendering speed. 

 

Figure 7: LDI with Two Sements 
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5.5 Clipping 

The LDI of the chestnut tree scene in Figure 11 is a large data set containing over 1.1 million depth pixels. If we 

naively render this LDI by reprojecting every depth pixel, we would only be able to render at one or two frames per 

second. When the viewer is close to the tree, there is no need to flow those pixels that will fall outside of the new view. 

Unseen pixels can be culled by intersecting the view frustum with the frustum of the LDI. This is implemented by 

intersecting the view frustum with the near and far plane of the LDI frustum, and taking the bounding box of the 

intersection. This region defines the rays of depth pixels that could be seen in the new view. This computation is 

conservative, and gives suboptimal results when the viewer is looking at the LDI from the side (see Figure 7). The view 

frustum intersects almost the entire cross section of the LDI frustum, but only those depth pixels in the desired view need 

be warped. Our simple clipping test indicates that most of the LDI needs to be warped. To alleviate this, we split the LDI 

into two segments, a near and a far segment (see Figure 7). These are simply two frustra stacked one on top of the other. 

The near frustum is kept smaller than the back segment. We clip each segment individually, and render the back segment 

first and the front segment second. Clipping can speed rendering times by a factor of 2 to 4. 

6. RESULTS 

While the LDIs are allocated with a maximum of 10 layers per pixel, the average depth complexity for these LDIs 

is only 1.24. Thus the use of three input images only increases the rendering cost by 24 percent. renderer                         

(running concurrently in a high-priority thread) generates images at 300 by 300 resolution. On a Pentium II PC running at 

300MHz, we achieved frame rate of 6 to 10 frames per second. Figures 9 and 10 show two cross-eye stereo pairs of a 

chestnut tree. In Figure 9 only the near segment is displayed. Figure 9 shows both segments in front of an environment 

map. The LDIs were created using a modified version of the Rayshade raytracer. The tree model is very large; Rayshade 

allocates over  340 MB of memory to render a single image of the tree. The stochastic method discussed in Section 4.2 

took 7 hours to trace 16 million rays through this scene using an SGI Indigo2 with a 250 MHz processor and 320MB of 

memory. The resulting LDI has over 1.1 million depth pixels, 70,000 of which were placed in the near segment with the 

rest in the far segment. When rendering this interactively we attain frame rates between 4 and 10 frames per second on a 

Pentium II PC running at 300MHz. 

 

Figure 8: Barnyard Scene 
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Figure 9: Near Segment of Chestnut 

 

Figure 10: Chestnut Tree in Front of Environment 

 

Figure 11: Dinosaur Model Reconstructed from 21 Photographs 

7. DISCUSSIONS 

In this paper, we have described two novel techniques for image based rendering. The first technique renders 

Sprites with Depth without visible gaps, and with a smoother rendering than traditional forward mapping (splatting) 
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techniques. It is based on the observa-tion that a forward mapped displacement map does not have to be as accurate as a 

forward mapped color image. If the displacement map is smooth, the inaccuracies in the warped displacement map result in 

only sub-pixel errors in the final color pixel sample positions. 

Our second novel approach to image based rendering is a Layered Depth Image representation. The LDI 

representation provides the means to display the parallax induced by camera motion as well as reveal disoccluded regions. 

The average depth complexity in our LDI's is much lower that one would achieve using multiple input images               

(e.g., only 1.24 in the Chicken LDI). The LDI representation takes advantage of McMillan's ordering algorithm allowing 

pixels to be splatted back to Front with an over compositing operation. Traditional graphics elements and planar sprites can 

be combined with Sprites with Depth and LDIs in the same scene if a back-to-front ordering is maintained. In this case 

they are simply composited onto one another. Without such an ordering a z-buffer approach will still work at the extra cost 

of maintaining depth information per frame. 

Choosing a single camera view to organize the data has the advan-tage of having sampled the geometry with a 

preference for views very near the center of the LDI. This also has its disadvantages. First, pixels undergo two resampling 

steps in their journey from in-put image to output. This can potentially degrade image quality. Secondly, if some surface is 

seen at a glancing angle in the LDIs view the depth complexity for that LDI increases, while the spatial sampling resolution 

over that surface degrades. The sampling and aliasing issues involved in our layered depth image approach are still not 

fully understood; a formal analysis of these issues would be helpful. 

With the introduction of our two new representations and rendering techniques, there now exists a wide range of 

different image based rendering methods available. At one end of the spectrum are tradi-tional texture-mapped models. 

When the scene does not have too much geometric detail, and when texture-mapping hardware is avail-able, this may be 

the method of choice. If the scene can easily be partitioned into non-overlapping sprites (with depth), then triangle-based 

texture-mapped rendering can be used without requiring a z buffer [17, 4]. 

All of these representations, however, do not explicitly account for certain variation of scene appearance with 

viewpoint, e.g., specu-larities, transparency, etc. View-dependent texture maps [5], and 4D representations such as 

lightfields or Lumigraphs [15, 7], have been designed to model such effects. These techniques can lead to greater realism 

than static texture maps, sprites, or Layered Depth Images, but usually require more effort (and time) to render. 

In future work, we hope to explore representations and rendering al-gorithms which combine several image based 

rendering techniques. Automatic techniques for taking a 3D scene (either synthesized or real) and re-representing it in the 

most appropriate fashion for im-age based rendering would be very useful. These would allow us to apply image based 

rendering to truly complex, visually rich scenes, and thereby extend their range of applicability. 
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